Consider the function $f(x, y)=x^{2} y+y^{3}-48 y$ ．
f has ？at $(0,-4)$ ．
f has $?$ at $(0,4)$ ．
f has $?$ at $(-4 \sqrt{3}, 0)$ ．
f has $?$ at $(0,0)$ ．
f has $?$ at $(4 \sqrt{3}, 0)$ ．

Consider the function $f(x, y)=x^{2} y+y^{3}-48 y$ ．
f has a maximum at $(0,-4)$ ．
f has a minimum at $(0,4)$ ．
f has a saddle at $(-4 \sqrt{3}, 0)$ ．
f has no critical point at $(0,0)$ ．
f has a saddle at $(4 \sqrt{3}, 0)$ ．

