Consider the function $f(x,y) = x^2y + y^3 - 48y$.

 $f \text{ has } \boxed{?} \text{ at } (0, -4).$

f has? at (0,4).

f has $\boxed{?}$ at $(-4\sqrt{3},0)$.

f has ? at (0,0).

f has ? at $(4\sqrt{3}, 0)$.

Consider the function $f(x,y) = x^2y + y^3 - 48y$.

f has a maximum at (0, -4).

f has a minimum at (0,4).

f has a saddle at $(-4\sqrt{3}, 0)$.

f has $\begin{vmatrix} \mathbf{no} & \mathbf{critical} & \mathbf{point} \\ \mathbf{at} & (0,0) \end{vmatrix}$.

f has a saddle at $(4\sqrt{3}, 0)$.