Find the maximum and minimum values of the function $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the domain $x^{2}+y^{2} \leq 289$ ．

The maximum value of $f(x, y)$ is： \square
List the point（s）where the function attains its maximum as an ordered pair，such as $(-6,3)$ ， or a list of ordered pairs if there is more than one point，such as $(1,3),(-4,7)$ ．
\square
The minimum value of $f(x, y)$ is： \square
List points where the function attains its minimum as an ordered pair，such as $(-6,3)$ ，or a list of ordered pairs if there is more than one point，such as $(1,3),(-4,7)$ ．

Find the maximum and minimum values of the function $f(x, y)=2 x^{2}+3 y^{2}-4 x-5$ on the domain $x^{2}+y^{2} \leq 289$ ．

The maximum value of $f(x, y)$ is： 866
List the point（s）where the function attains its maximum as an ordered pair，such as $(-6,3)$ ， or a list of ordered pairs if there is more than one point，such as $(1,3),(-4,7)$ ．
$(-2,-\sqrt{285}),(-2, \sqrt{285})$
The minimum value of $f(x, y)$ is：-7
List points where the function attains its minimum as an ordered pair，such as $(-6,3)$ ，or a list of ordered pairs if there is more than one point，such as $(1,3),(-4,7)$ ．

$$
(1,0)
$$

