Find positive numbers a and b so that the change of variables $s=a x, t=b y$ transforms the integral

$$
\iint_{R} d x d y
$$

into

$$
\iint_{T}\left|\frac{\partial(x, y)}{\partial(s, t)}\right| d s d t
$$

for the region R ，the rectangle $0 \leq x \leq 15,0 \leq y \leq 10$ and the region T ，the square $0 \leq s, t \leq 1$ ．

$$
\begin{aligned}
& a=\square \\
& b=\square
\end{aligned}
$$

What is $\left|\frac{\partial(x, y)}{\partial(s, t)}\right|$ in this case？

$$
\left|\frac{\partial(x, y)}{\partial(s, t)}\right|=\square
$$

Find positive numbers a and b so that the change of variables $s=a x, t=b y$ transforms the integral

$$
\iint_{R} d x d y
$$

into

$$
\iint_{T}\left|\frac{\partial(x, y)}{\partial(s, t)}\right| d s d t
$$

for the region R ，the rectangle $0 \leq x \leq 15,0 \leq y \leq 10$ and the region T ，the square $0 \leq s, t \leq 1$ ．

$$
\begin{aligned}
& a=1 / 15 \\
& b=1 / 10
\end{aligned}
$$

What is $\left|\frac{\partial(x, y)}{\partial(s, t)}\right|$ in this case？

$$
\left|\frac{\partial(x, y)}{\partial(s, t)}\right|=1150
$$

