Given that $$\vec{v}_1=\begin{bmatrix} -1\\2 \end{bmatrix}$$ and $\vec{v}_2=\begin{bmatrix} 0\\-1 \end{bmatrix}$ are eigenvectors of the matrix $$A = \left[\begin{array}{cc} 0 & 0 \\ -4 & -2 \end{array} \right],$$ determine the corresponding eigenvalues. $$\lambda_1 = \boxed{}$$. $$\lambda_2 =$$. Given that $$\vec{v}_1=\begin{bmatrix} -1\\2 \end{bmatrix}$$ and $\vec{v}_2=\begin{bmatrix} 0\\-1 \end{bmatrix}$ are eigenvectors of the matrix $$A = \left[\begin{array}{cc} 0 & 0 \\ -4 & -2 \end{array} \right],$$ determine the corresponding eigenvalues. $$\lambda_1 = \boxed{0}$$. $$\lambda_2 = \begin{vmatrix} -2 \end{vmatrix}$$.