$0 < |x - 0| < \delta \implies |f(x) - f(0)| < \epsilon.$

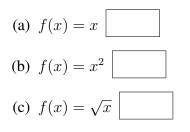
To prove the right-continuity statement requires a definition of δ in terms of ϵ such that

$$0 < x - 0 < \delta \implies |f(x) - f(0)| < \epsilon.$$

For each function in the list below, enter the number (1,2, or 3) of one of these choices

(1)
$$\delta = \epsilon^2$$
; (2) $\delta = \epsilon$; (3) $\delta = \sqrt{\epsilon}$

so that your choices establish continuity of the first two functions, and right-continuity of the third function, at x = 0. [You may use each choice only once.]



In this problem we consider three functions f. The first two are continuous at x = 0, i.e., $\lim_{x\to 0} f(x) = f(0)$. The third function is continuous from the right at x = 0, i.e., $\lim_{x\to 0^+} f(x) = f(0)$. In order to use the ϵ - δ definition to prove the continuity statements, one must give a definition of δ in terms of ϵ such that

 $0 < |x - 0| < \delta \implies |f(x) - f(0)| < \epsilon.$

To prove the right-continuity statement requires a definition of δ in terms of ϵ such that

$$0 < x - 0 < \delta \implies |f(x) - f(0)| < \epsilon.$$

For each function in the list below, enter the number (1,2, or 3) of one of these choices

(1)
$$\delta = \epsilon^2$$
; (2) $\delta = \epsilon$; (3) $\delta = \sqrt{\epsilon}$

so that your choices establish continuity of the first two functions, and right-continuity of the third function, at x = 0. [You may use each choice only once.]

(a)
$$f(x) = x$$
 (2)
(b) $f(x) = x^2$ (3)
(c) $f(x) = \sqrt{x}$ (1)