
| (1) Let $W_1$ be the set: $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ . Determine if $W_1$ is a basis for $\mathbb{R}^3$ and                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| check the correct answer(s) below.                                                                                                                                                                                                                        |
| A. $W_1$ is not a basis because it does not span $\mathbb{R}^3$ .                                                                                                                                                                                         |
| <b>B.</b> $W_1$ is not a basis because it is linearly dependent.                                                                                                                                                                                          |
| <b>C.</b> $W_1$ is a basis.                                                                                                                                                                                                                               |
| (2) Let $W_2$ be the set: $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$ . Determine if $W_2$ is a basis for $\mathbb{R}^3$ and check the correct answer(c) below |
| check the correct answer(s) below.                                                                                                                                                                                                                        |
| A. $W_2$ is not a basis because it is linearly dependent.                                                                                                                                                                                                 |
| <b>B.</b> $W_2$ is not a basis because it does not span $\mathbb{R}^3$ .                                                                                                                                                                                  |
| <b>C.</b> $W_2$ is a basis.                                                                                                                                                                                                                               |

