A square matrix is called a permutation matrix if it contains the entry 1 exactly once in each row and in each column, with all other entries being 0. All permutation matrices are invertible. Find the inverse of the permutation matrix

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

A square matrix is called a permutation matrix if it contains the entry 1 exactly once in each row and in each column, with all other entries being 0. All permutation matrices are invertible. Find the inverse of the permutation matrix

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

$A^{-1} = \left[\right]$	0	0	1	0
	0	0	0	1
	1	0	0	0
	0	1	0	0