Let

$$A = \begin{bmatrix} 4 & 8 \\ 6 & 15 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} -20 \\ -36 \\ -3 \end{bmatrix}.$$

A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by T(x) = Ax. Find an \vec{x} in \mathbb{R}^2 whose image under T is \vec{b} .

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} \boxed{} \\ \boxed{} \end{array}\right]$$

Let

$$A = \begin{bmatrix} 4 & 8 \\ 6 & 15 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} -20 \\ -36 \\ -3 \end{bmatrix}.$$

A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by T(x) = Ax. Find an \vec{x} in \mathbb{R}^2 whose image under T is \vec{b} .

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} -1 \\ \hline -2 \end{array}\right]$$